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Black-Box Optimization from Offline 
Datasets: Foundations to Recent Advances

Jan 21 @ 8:30am (Room Opal 107)

Slides: https://offlineopt-tutorial.github.io/

https://offlineopt-tutorial.github.io/
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Outline of Tutorial

hIntroduction and Overview

hForward Modeling Approaches

hInverse Modeling Approaches

hTheoretical Analysis

hOffline Optimization in Small Data Setting

hOpen Challenges
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Applications: Drug Discovery

hLot of costly experiments at every stage

* The Drug Development Process. U.S. Food and Drug Administration (FDA)

mailto:https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process
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Applications: Nanoporous Materials Discovery

h Costly experiment to make 
and evaluate each MOF

Storing gases
(e.g., hydrogen powered 

cars)

Capture gases
(e.g., carbon dioxide 

power plants)

Catalysis, Drug Delivery 
etc.

* Yaghi, Omar M. Reticular chemistry in all dimensions. ACS Central Science.
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Applications: Next-Generation Hardware Design

hExpensive computational simulations

America’s Data Centers Are Wasting Huge 
Amounts of Energy*

* Report from Natural Resources Defense Council

Energy-efficient hardware 
accelerators
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Offline Optimization: Problem Definition

hGiven 
5Black-box objective function

g e.g., wet-lab experiments, real-world health interventions
5Design space 

g Focus on high-dimensional or structured design spaces
g e.g., space of proteins, materials, AutoML configurations

hGoal: Find (nearly) optimal designs with one or very few 
batches of evaluations using the objective function
5“offline” refers to access to prior logged datasets
5Sometimes also referred to as “data-driven”
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Offline Optimization: Problem Definition

𝑥! , 𝑦! 	 𝑖 ∈ {1, …𝐷} Black-box 
optimization from 
offline datasets

No or limited additional interaction

Offline 
training data

Experimenter
(Scientist/Engineer)

Design Space

hGoal: Find (nearly) optimal designs with one or very few 
batches of evaluations using the objective function
5“offline” refers to access to prior logged datasets
5Sometimes also referred to as “data-driven”

Optimized 
designs
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Motivation: AutoML for Foundation Models

hFoundation models require significant resources for 
pretraining and finetuning
5e.g., months of training and millions of dollars for pre-training

hGoal: find optimal configurations (e.g., hyper-parameters, 
data pipelines, data selection) while minimizing resources
5Leverage “offline” data from prior configurations of in-house 

and/or open-source models

Credit: https://www.labellerr.com/blog/beginners-guide-using-foundation-models-in-ml-projects/
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Motivation: Safe Healthcare Strategies

hDiscover optimal parameters for healthcare devices
5e.g., brain-modulation device 

hSafety/regulation requirements prohibit online exploration

hGoal: find optimal parameters for continued home usage 
5Leverage “offline” data from logs of prior in-clinic usage under 

careful attention of experts/doctors
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Motivation: Hardware Accelerators

hGrowing need of application-specific hardware accelerators 
in shorter timescales
5Potentially, avoid the use of time-consuming simulations 

hGoal: find optimal application-specific hardware accelerators
5Leverage “offline” data of previously tested accelerator designs

Kumar et al.,  Offline Optimization for Architecting Hardware Accelerators, ICLR 2022
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Motivation: Climate-Smart Agriculture

hGrowing need for adoption of climate smart strategies

hExcessively long timeframes for farmers to see agricultural 
yield (objective) based on chosen strategy (search space)

hGoal: find optimal climate-smart designs from previously 
tested strategies
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Many Science and Engineering Applications

hBiological sequence design
5Protein sequence design

g Takizawa et al., Safe model-based optimization balancing 
exploration and reliability for protein sequence design

5Cell-type promoter sequence design
g Reddy et al., Designing Cell-Type-Specific Promoter Sequences 

Using Conservative Model-Based Optimization

hAntibody design 

hNanoporous materials design 

h…
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Offline Optimization vs. Online Optimization

hOffline Optimization: Find (nearly) optimal designs with one 
or very few batches of evaluations via objective function
5“offline” refers to access to prior logged datasets

hOnline Optimization: has access to large iterative rounds of 
access to true objective function

hRelevance of Offline setting to Online setting
5Selection of initial batch (e.g., aSCR and LEON)
5Last round of online optimization
5Problem setting with large batches per evaluation round

*aSCR: Generative Adversarial Model-Based Optimization via Source Critic Regularization, NeurIPS 2024

*LEON: Knowledgeable Language Models as Black-Box Optimizers for Personalized Medicine, arXiv:2509.20975
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Bayesian Approaches for Black-box Optimization

hBayesian approaches (BO) are SOTA for online optimization

hBayesian decision theory allows optimal decision making! 
5One round optimal decision-making is “Expected Improvement”

hThese approaches rely on Bayesian inference or principled 
uncertainty quantification
5Active research area in high-dimensional design spaces 

hKey BO references relevant to this tutorial:
5 TurBO: Scalable Global Optimization via Local Bayesian Optimization (NeurIPS-19)
5 FocalBO: Scalable Bayesian Optimization via Focalized Sparse GPs (NeurIPS-24)
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Nuances of Online Optimization
h (Physics/Knowledge-based) Digital Simulators

5Expensive in terms of computational resources
g e.g., physics simulations, hardware simulator, crop Simulator

5Pros: Can be evaluated online for multiple rounds
5Cons: Not always available and still a proxy (i.e., applicable within 

knowledge-domain)

hPhysical Real-world Experiments
5Significantly more expensive in multitude of resources (e.g., 

computational, human, monetary, regulatory)a
g  e.g., wet-lab experimentation (weeks/months), making a chip in 

a fab (months), real-world agriculture practices (months/years), 
Foundation models (months) 

5Prior data from human trial-and-error approaches is available error 
available
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Outline of Tutorial

hIntroduction and Overview

hForward Modeling Approaches

hInverse Modeling Approaches

hTheoretical Analysis

hOffline Optimization in Small Data Setting

hOpen Challenges
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Forward Modeling: Big Picture

𝑥! , 𝑦! 	 𝑖 ∈ {1, …𝐷} Black-box 
optimization from 
offline datasetsOffline 

training data
Experimenter

(Scientist/Engineer)
Design Space

Optimized 
designs

hStep 1: Training a surrogate model

hStep 2: Gradient based search from best training designs

𝑥!, 𝑦! 	 𝑖 ∈ {1, …𝐷}
Offline training data
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Forward Modeling: Big Picture

hFocus on (1) modeling surrogate: 

                                 g(design) = performance 

    

    and/or     (2) search procedure:

                                 Π(design; g) = design update

    Challenge: g(x) is erratic when x is far from offline data

                                                                

x z

x ∆x
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Forward Modeling: Big Picture

hFocus on (1) modeling surrogate: 

                                 g(design) = performance 

    

    and/or     (2) search procedure:

                                 Π(design; g) = design update

    Π(x; g): estimate the trust region where g(x) is reliable

                  and avoid venturing outside it

                                                                

x z

x ∆x



AAAI-2026 Tutorial on Black-Box Optimization from Offline Datasets 20

Forward Modeling Approaches: Summary
1. Conservative Surrogate. Fit a surrogate to offline data while 
      decreasing its prediction for OOD (out of distribution) designs

 2. Smoothness-aware Surrogate Ensemble. Fit a neighborhood of 
     surrogates to offline data & perform search at each step with one that 
     is smoothest at the current design
        
 3. Minimizing Surrogate Sensitivity. Fitting a surrogate while minimizing 
     output sensitivity under random model perturbations

 4. Using In-Distribution Critic. Fitting a surrogate and finding its optima 
      where the critic determines in-distribution with high confidence

 5. Gradient Matching. Learning gradient curvature instead of matching
      objective function output (relative ordering is all that matters!) 
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COMS: Conservative Surrogate [Trabucco et al., 2021]

𝜃 = argmin E(x, z) ~ D[ (g(x; 𝜃) - z)2 ] + 

                  2𝛼(Ex~𝝁[g(x; 𝜃)] – Ex~D[g(x; 𝜃)]) 

standard MSE

OOD average is discouraged to be larger 
than in-distribution average 

OOD set collected via early 
gradient ascent on g(x; 𝜃)
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ROMA: Smoothness-Aware Surrogate Ensemble

Ensemble loss 
(prediction loss of the worst surrogate in the neighborhood)

L(𝜃) = max    E(x, z)~D Eu~N(0, 𝜎I) [ (g(x + u; 𝜃’) - z)2 ] 

Neighborhood: 𝜃’ ∈ B(𝜃) means ∥ 𝜃 − 𝜃′ ∥ ≤ 𝜀 ∥ 𝜃 ∥

                  

𝜃’ ∈ B(𝜃)

ROMA (Yu et al., 2021)
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Smoothness-Aware Surrogate Ensemble

Test-Time Adaption: Choose the surrogate with maximum local 
smoothness to guide the next search step

𝜃t+1 = min ∥ ∇g(x; 𝜃) ∥  + 𝛼(g(x; 𝜃) - g(x; 𝜃t)) => smoothest model

x  =  x   +  𝜀 ∇g(x; 𝜃t+1) => step-wise update with selected model

                  
ROMA (Yu et al., 2021)
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Minimizing Surrogate Sensitivity

Surrogate Sensitivity: The chance that the expected output of the model
changes significantly under random model perturbation

S(𝛼, 𝜔) = Pu( A(𝜃, u) ≥ 𝛼 )  where A(𝜃, u) = |E[g(x; 𝜃 + u)] – E[g(x; 𝜃)]|

                                                and u ~ N(0, 𝜔I) 

BOSS (Dao et al., 2024a), IGNITE (Dao et al., 2024b)
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Minimizing Surrogate Sensitivity

Surrogate Sensitivity: The chance that the expected output of the model
changes significantly under random model perturbation

                                 𝜃 = argmin L(𝜃) + 𝜆 S(𝛼, 𝜔)

BOSS (Dao et al., 2024a), IGNITE (Dao et al., 2024b)
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GABO: Using In-Distribution Critics

In-Distribution Critics: The chance that the expected output of the model
changes significantly under random model perturbation

                      c*(.) = argmax Ex’ ~ P[c(x’)] - Ex ~ Q[c(x)]  

GABO (Yao et al., 2024)

Constrained Optimization: Minimize g(x; 𝜃) where c(x) often determines 
in-distribution with high confidence: 

minimize -g(x; 𝜃)

subject to Ex’ ~ P[c*(x’)] – c(x) ≤ 0
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MATCH-OPT: Gradient Matching
Gradient Matching: Learning gradient curvature instead of matching 
objective function output values (relative ordering is all that matters!)

MATCH-OPT (Hoang et al., 2024)
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Gradient Matching

Intuition: 
(1) gradient error leads to compounding search errors
(2) gradient error can be subsided via explicit gradient 
matching

Empirical verification on 4D Shekel function

(1) train ∼ N(0, I)

(2) test ∼ N(0, αI) (i.e., OOD testing inputs)

Observation: Gap widens with optimization steps 
→ less error compounding in OOD regions.
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Gradient Matching: Intuition
Key Idea: Learn the dynamics of optimization, not just function values

Gradients do not align 
with optimization path

Gradients align with 
optimization path

Optimum Optimum

Learned gradients with MATCH-OPT
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A. Sample monotonic trajectories (low → high performance) 
     → Learn optimization-aligned gradients, not just function values

B. Match integrated gradients with gradient-alignment loss 
     → Generalizes better in high-value regions

C. Combined MSE + gradient loss 
     → Closes the prediction-optimization gap of standard surrogates

Gradient Matching Approach: The Recipe
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Gradient Match Loss

Use line integration theorem,

∆𝑧 = 𝑧′	 − 𝑧 	= 	 𝒙" − 𝒙 #∫𝟎
𝟏∇𝒙 𝑔 𝑡𝒙" + 1 − 𝑡 𝒙 	𝑑𝑡     

                             ≈ 𝒙" − 𝒙 # ∫𝟎
𝟏∇𝒙 𝑔 𝑡𝒙" + 1 − 𝑡 𝒙; 	𝜙 	𝑑𝑡 

Gradient Match Loss: 

(1) sampling a no. of offline training pairs (𝒙, 𝑧) and (𝒙’, 𝑧′)

(2) minimize the (averaged) gap between (A) and (B)

Gradient Matching via Line Integration Theorem

MATCH-OPT (Hoang et al., 2024)
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PGS: Policy-Guided Search via Offline RL

PGS (Chemingui et al., 2024)

Key Idea: Learn a policy using offline RL to correct gradient errors 
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Experimental Evaluation: Forward Modeling

Dataset Size Dimensions Categories Type

Ant Morphology 25009 60 N/A Continuous

D’Kitty Morphology 25009 56 N/A Continuous

TF Bind 8 32898 8 4 Discrete

TF Bind 10 50000 10 4 Discrete

RNA-Binding 5000 14 4 Discrete

Benchmark Optimization Tasks:

Trabucco et al, “Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization”, ICML 2022
Lorenz et al, “ViennaRNA Package 2.0”, Algorithms for Molecular Biology 2011
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Experimental Evaluation: Forward Modeling

Observations: 
(1) no method is best in more than 2 task domains 
(2) MATCH-OPT is in top-3 in 4/6 tasks; more reliable
(3) MATCH-OPT achieves best mean normalized rank
                               

Normalized performance of at 100-percentile

MATCH-OPT (Hoang et al., 2024)
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Outline of Tutorial

hIntroduction and Overview

hForward Modeling Approaches

hInverse Modeling Approaches

hTheoretical Analysis

hOffline Optimization in Small Data Setting

hOpen Challenges
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Inverse Modeling: Big Picture

hFocus on modeling p(design | performance) 

hHow to redistribute mass from the data distribution 
toward regions associated with high performance? 

    

     p(design)                                p(design | performance)

x z ≥ 𝝀 

x z ≥ 𝝀 x
?
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Forward vs. Inverse Modeling

hHow to redistribute mass from the data distribution 
toward regions associated with high performance? 

    

    p(design)                                p(design | performance)

h (Forward) Geometric     vs.    (Inverse) Distributional view

x z ≥ 𝝀 x
?

local gradient ∇g(x)
edit policy: x       ∆x

neural surrogate z = g(x)
reinforcement learning

data distribution p(x)
predictive uncertainty p(z | x)

generative modeling
probabilistic prediction
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Inverse Modeling: A Unified View

p(design)                                p(design | performance)

hUnified view (w/ different instantiations):

    p(x | z ≥ 𝝀)   =  p(z ≥ 𝝀 | x) p(x) / p(z ≥ 𝝀)

                           ∝  p(z ≥ 𝝀 | x) p(x)   [Bayes Theorem]

    where p(x) can be learned via deep generative modeling

                p(z ≥ 𝝀 | x) = E [I(z ≥ 𝝀) | z ~ pD(z | x)]

    

x z ≥ 𝝀 x
?

probabilistic prediction 
(learned from offline data)
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Inverse Modeling: A Unified View

p(design)                                p(design | performance)

hUnified view (w/ different instantiations):

    p(x | z ≥ 𝝀)   =  p(z ≥ 𝝀 | x) p(x) / p(z ≥ 𝝀)

                           ∝  p(z ≥ 𝝀 | x) p(x)   [Bayes Theorem]

     p(x) and p(z ≥ 𝝀 | x) can be estimated but exact    
     computation of p(x | z ≥ 𝝀) remains intractable 

    

x z ≥ 𝝀 x
?
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Inverse Modeling: A Unified View

p(design)                                p(design | performance)

hUnified view (w/ different instantiations):

    p(x | z ≥ 𝝀)   =  p(z ≥ 𝝀 | x) p(x) / p(z ≥ 𝝀)

                           ∝  p(z ≥ 𝝀 | x) p(x)   [Bayes Theorem]

     p(x) and p(z ≥ 𝝀 | x) can be estimated but exact    
     computation of p(x | z ≥ 𝝀) remains intractable 

     Inverse modeling: Different approaches to approximate
                               p(x | z ≥ 𝝀) with a parametric distribution

x z ≥ 𝝀 x
?
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DBAS: Design by Adaptive Sampling

p(design)                                p(design | performance)

hDesign by Adaptive Sampling (DBAS) [Brookes & Listgarten, 2018]

  

    𝜃	= argmin KL(p(x | z ≥ 𝝀) ∥ p(x; 𝜃))

        = argmin E[-log p(x; 𝜃) * p(z ≥ 𝝀 | x) | x ~ p(x)]

        ≃	argmin E[-log p(x; 𝜃) * p(z ≥ 𝝀 | x) | x ~ D(x)]

x z ≥ 𝝀 x
?

empirical data 
distribution
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DBAS: Design by Adaptive Sampling

p(design)                                p(design | performance)

hDesign by Adaptive Sampling (DBAS) [Brookes & Listgarten, 2018]

    𝜃	= argmin KL(p(x | z ≥ 𝝀) ∥ p(x; 𝜃))

        = argmin E[-log p(x; 𝜃) * p(z ≥ 𝝀 | x) | x ~ p(x)]

        ≃	argmin E[-log p(x; 𝜃) * p(z ≥ 𝝀 | x) | x ~ D(x)]

x z ≥ 𝝀 x
?

too close to zero when 𝝀 is large
and x ~ p(x) ≅ D(x) – learning collapses!
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DBAS: Design by Adaptive Sampling

p(design)                                p(design | performance)

hDesign by Adaptive Sampling (DBAS) [Brookes & Listgarten, 2018]

    Annealing (raising 𝝀 slowly) to avoid learning collapse

    𝜃!"# = argmin E[-log p(x; 𝜃) * p(z ≥ 𝝀!"#| x) | x ~ p(x; 𝜃!)]

x z ≥ 𝝀 x
?

𝜃

(frozen) generative model
from previous step

(learnable) present
generative model
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DBAS: Design by Adaptive Sampling

p(design)                                p(design | performance)

hDesign by Adaptive Sampling (DBAS) [Brookes & Listgarten, 2018]

    Generative model representation: 
    must be differentiable and can be sampled from

    For example, variational auto-encoder (VAE):

    log p(x; 𝜃) ≥ Eq(z | x; 𝛾)[log p(x | z; 𝜃)] – KL(q(z | x; 𝛾) ∥ p(z))

x z ≥ 𝝀 x
?

denoising noising noise



AAAI-2026 Tutorial on Black-Box Optimization from Offline Datasets 45

DBAS: Design by Adaptive Sampling

p(design)                                p(design | performance)

    sample can be drawn via (1) sampling (Gaussian) noise; 
                                                 (2) simulating denoising

    For example, variational auto-encoder (VAE):

    log p(x; 𝜃) ≥ Eq(z | x; 𝛾)[log p(x | z; 𝜃)] – KL(q(z | x; 𝛾) ∥ p(z))

x z ≥ 𝝀 x
?

denoising noising noise
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CBAS: Conditional by Adaptive Sampling

p(design)                                p(design | performance)

hConditional by Adaptive Sampling for Robust Design
    (CBAS) [Brookes and Listgarten, 2019]

    Issue with annealing DBAS:
 
				𝜃!"# = argmin E[-log p(x; 𝜃) * p(z ≥ 𝝀!"#| x) | x ~ p(x; 𝜃!)]

             = argmin KL(p(x | z ≥ 𝝀!"#) ∥ p(x;𝜃!))
    
            (eroding the anchor to D(x) – error might be amplified) 

x z ≥ 𝝀 x
?
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CBAS: Conditional by Adaptive Sampling

p(design)                                p(design | performance)

hConditional by Adaptive Sampling for Robust Design
    (CBAS) [Brookes and Listgarten, 2019]

    Anchoring to D(x) (data distribution) via 
    simple re-parameterization: 
 
				𝜃!"# = argmin E[-log p(x; 𝜃) * p(z ≥ 𝝀!"#| x) | x ~ D(x)]

             = argmin E[-log p(x; 𝜃) * (p(z ≥ 𝝀!"#| x) * D(x) / p(x;𝜃t))]

x z ≥ 𝝀 x
?

x ~ p(x;𝜃t) 
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Limitations of DBAS/CBAS

p(design)                                p(design | performance)

hFundamental limitations of DBAS/CBAS:

    p(x | z ≥ 𝝀) ∝  p(z ≥ 𝝀 | x) p(x)  

    what happens when a high-value regime Dh 
    is not well-supported, i.e., p(x) ≃ 0 when x belongs to Dh?
    
    DBAS/CBAS only reshape within existing support 
    (i.e., cannot expand support)
 

x z ≥ 𝝀 x
?
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BONET: Generative Pretraining

p(design)                                p(design | condition)

h Generative Pre-Training for Offline Optimization (BONET)
     [Mashkaria et al., 2023] 

     Alternatively, BONET characterizes condition as a generative
     path, i.e., condition = (r(1), x(1), …, r(p), x(p), r(p + 1)) 
                       where r(i) = (f(x*) – f(x(i)) + … + (f(x*) – f(x(𝜏)) -- regret

     p(x(p + 1) | r(p + 1); 𝜃) = E[p(x(p + 1), c | r(p + 1); 𝜃) | c]
                                              = Ec ∏)*+

, p(x(p + 1) | r(1: p + 1), x(𝟏: 𝒑)	; 𝜽)
                
 

xx
?

c

auto-regressive model
(i.e., transformer)
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BONET: Generative Pretraining

p(design)                                p(design | condition)

h Generative Pre-Training for Offline Optimization (BONET)
     [Mashkaria et al., 2023] 

     Alternatively, BONET characterizes condition as a generative
     path, i.e., condition = (r(1), x(1), …, r(p), x(p), r(p + 1)) 
                       where r(i) = (f(x*) – f(x(i)) + … + (f(x*) – f(x(𝜏)) -- regret

     Learn:     maximizing log p(x(p + 1) | r(p + 1); 𝜃) via

                     maximizing Ec log	∏)*+
, p(x(p + 1) | r(1: p + 1), x(𝟏: 𝒑)	; 𝜽)

                    The condition c can be sampled from offline data
                
 

xx
?

c

≥
# optimization steps
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BONET: Generative Pretraining

p(design)                                p(design | condition)

h Generative Pre-Training for Offline Optimization (BONET)
     [Mashkaria et al., 2023] 

     Alternatively, BONET characterizes condition as a generative
     path, i.e., condition = (r(1), x(1), …, r(p), x(p), r(p + 1)) 
                       where r(i) = (f(x*) – f(x(i)) + … + (f(x*) – f(x(𝜏)) -- regret

     Generate: 1. sample c
                        2. set r(p + 1) = r (small value)
                        3. generate x(p + 1) via p(x(p + 1) | r(1: p + 1), x(𝟏: p)	; 𝜽) 
                        4. repeat step 2 with p++ and same r
                     
                    

xx
?

c

# optimization steps
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Limitation of BONET

p(design)                                p(design | condition)

hFundamental limitation of BONET:

    p(design | condition) only generalizes well along paths 
    that are similar to observed condition in offline data

    i.e., learning is ill-conditioned in regimes of condition w/o
           support from the data distribution 

x cx
?
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Limitations of DBAS/CBAS

p(design)                                p(design | performance)

hFundamental limitations of DBAS/CBAS (recap):

    p(x | z ≥ 𝝀) ∝  p(z ≥ 𝝀 | x) p(x)  

    DBAS/CBAS only reshape within existing support 
    i.e., cannot expand support 

    Motivation for using diffusion: 
    A diffusion model guarantees support almost everywhere
 

x z ≥ 𝝀 x
?
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Limitations of DBAS/CBAS

p(design)                                p(design | performance)

hFundamental limitations of DBAS/CBAS:

    p(x | z ≥ 𝝀) ∝  p(z ≥ 𝝀 | x) p(x)  

    Even with diffusion base p(x), DBAS/CBAS still reweights 
    on rare event as p(z ≥ 𝝀 | x) is applied post generation

    i.e., less mass gets shifted to high-value regimes that
    have originally low support 
    (even when p(z ≥ 𝛌 | x) suggests high potential)

x z ≥ 𝝀 x
?
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DDOM: Denoising Diffusion Optimization Model

p(design)                                p(design | performance)

hGuided Diffusion: Denoising Diffusion Optimization 
Model (DDOM) [Krishnamoorthy et al., 2023]

    1. Can expand support flexibly 
     (mass can be moved to previously unsupported regions)

    2. Incorporate reweighting within generation process 
        (guided generation to accelerate mass relocation)

x z ≥ 𝝀 x
?
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DBAS/CBAS vs. DDOM

p(design)                                p(design | performance)

hDBAS/CBAS represents (noising, denoising) via
    separately parameterized encoder & decoder 
    (do not guarantee p(x) having support almost everywhere)

• DDOM represents (noising, denoising) via SDE and
    its induced reverse-time SDE 
       

the relationship is provable rather than  approximated via 
learning (compared to VAE) 

x z ≥ 𝝀 x
?
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DDOM: Denoising Diffusion Optimization Model

p(design)                                p(design | performance)

hGuided Diffusion: Denoising Diffusion Optimization Model 
(DDOM) [Krishnamoorthy et al., 2023]

    
Noising via forward SDE from x(0) ~ D(x)
    dx(t) = u(x(t), t) dt   +  g(t) dw(t) where dw(t) ~ N(0, dt)
                                                                            
    
   

x z ≥ 𝝀 x
?

Brownian motion
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DDOM: Denoising Diffusion Optimization Model

p(design)                                p(design | performance)

hGuided Diffusion: Denoising Diffusion Optimization Model 
(DDOM) [Krishnamoorthy et al., 2023]

    Noising via forward SDE from x(0) ~ D(x)
    dx(t) = u(x(t), t) dt   +  g(t) dw(t) where dw(t) ~ N(0, dt)
                                                                            
    
                     
    Appropriate choices of u(x(t), t) and g(t) guarantee
    x(t) is distributed by N(0, I) when t is sufficiently large

x z ≥ 𝝀 x
?

Brownian motion

-1/2 g(t) positive, monotonic
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DDOM: Denoising Diffusion Optimization Model

p(design)                                p(design | performance)

hGuided Diffusion: Denoising Diffusion Optimization Model 
(DDOM) [Krishnamoorthy et al., 2023]

    Noising via forward SDE from x(0) ~ D(x)
    dx(t) = u(x(t), t) dt   +  g(t) dw(t) where dw(t) ~ N(0, dt)
                                                                            
    Denoising via reverse-time SDE from x(T) ~ N(0, I) 
    dx(t) = (u(x(t), t)  -  g(t)2 ∇log pt(x(t))) dt  +  g(t) dw(t)
                 
                where dw(t) is reverse Brownian
                             pt(x(t)) is marginal of x(t) in forward SDE

   

x z ≥ 𝝀 x
?
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DDOM: Denoising Diffusion Optimization Model

p(design)                                p(design | performance)

h Idea #1: Classifier-guided diffusion (not yet what DDOM does) 
                   [Dhariwal and Nichol, 2021]

    1. Given u(x(t), t) and g(t), learn ∇log pt(x(t)) via score matching
                                                                            
    2. Augmenting with p(z ≥ 𝝀	| x(t))
            ∇log pt(x | z ≥ 𝝀)  =  ∇log pt(x(t))  + ∇log p(z ≥ 𝝀	| x(t))
 
   

x z ≥ 𝝀 x
?
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DDOM: Denoising Diffusion Optimization Model

p(design)                                p(design | performance)

h Idea #1: Classifier-guided diffusion

    3. sample high-value designs via simulating:
   
    dx(t) = (u(x(t), t) - g(t)2 ∇log pt(x(t) | z ≥ 𝝀)) dt + g(t) dw(t)

    Boils down to estimate score ∇log pt(x(t))
    and augment it with p(z ≥ 𝝀	| x(t)) – the rest is fixed

x z ≥ 𝝀 x
?
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DDOM: Denoising Diffusion Optimization Model

p(design)                                p(design | performance)

h Issue with idea #1: 

    Dependent on learning p(z | x) accurately
    
    1. p(z | x) might not generalize well along the diffusion path   

(due to limited data)

    2. p(z | x) requires accurate uncertainty quantification
      (less reliable with large model)

x z ≥ 𝝀 x
?
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DDOM: Denoising Diffusion Optimization Model

p(design)                                p(design | performance)

h Guided Diffusion: Denoising Diffusion Optimization Model (DDOM) 
[Krishnamoorthy et al., 2023]

    Idea #2: Classifier-free diffusion (what DDOM does) 
                   [Ho and Salimans, 2022]

    1. Given u(x(t), t) and g(t), learn ∇log pt(x(t)) via score matching
                                                                            
    2. Aim to sample from p(x(t) | z(0) = 𝝀) 
                                          rather than p(x(t) | z(t) ≥ 𝝀) 
   

x z ≥ 𝝀 x
?



AAAI-2026 Tutorial on Black-Box Optimization from Offline Datasets 64

DDOM: Denoising Diffusion Optimization Model

p(design)                                p(design | performance)

h Idea #2: Classifier-free diffusion (what DDOM does) 
                   [Ho and Salimans, 2022]
                                                      
    2. Note that 
        ∇log p(x(t) | z(0)) = E[∇log p(x(t) | x(0)) | x(t), x(0), z(0)] 
                
                where (x(0), z(0)) ~ D
                x(t) is sampled via simulating SDE from x(0)
   

x z ≥ 𝝀 x
?

conditional score matching
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DDOM: Denoising Diffusion Optimization Model

p(design)                                p(design | performance)

h Idea #2: Classifier-free diffusion (what DDOM does) 
                   [Ho and Salimans, 2022]
                                                      
    2. Note that 
        ∇log p(x(t) | z(0)) = E[∇log p(x(t) | x(0)) | x(t), x(0), z(0)] 
                
                where (x(0), z(0)) ~ D
                x(t) is sampled via simulating SDE from x(0)
   

x z ≥ 𝝀 x
?

does not involve p(z | x) J
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DDOM: Denoising Diffusion Optimization Model

p(design)                                p(design | performance)

h Idea #2: Classifier-free diffusion (what DDOM does) 
                              [Ho and Salimans, 2022]
                                                      
    3. sample high-value designs for a performance level
        z(0) = 𝝀	via simulating:
   
        dx(t) = (u(x(t), t) - g(t)2 s(𝒙(t), t, 𝝀)) dt + g(t) dw(t)
        where s(𝒙(t), t, 𝝀) = 𝛼 ∇log p(x(t) | x(0)) +
                                             (1 - 𝛼) ∇log p(x(t) | z(0) = 𝝀)

x z ≥ 𝝀 x
?
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DDOM: Denoising Diffusion Optimization Model

p(design)                                p(design | performance)

h Issue with idea #2 (DDOM) 

    Due to limited offline data, the score network s(𝒙(t), t, 𝝀)
    might only see low value of 𝝀 = z(0) and cannot generalize
    well during sampling when we want to condition on high 𝝀

    We need more explicit mechanism to mitigate data scarcity    

x z ≥ 𝝀 x
?



AAAI-2026 Tutorial on Black-Box Optimization from Offline Datasets 68

Low-to-High Value Design Translation

p(low)                                p(high)

hNew Perspective: Generative Meta Optimization

    1. Generate similar synthetic functions and their
        corresponding low- and high-value regimes 
        (to mitigate data scarcity)

    2. Learn direct, meta-transport between the unionized
        low- and high-value design regimes of all functions
        (sidestep guided diffusion, de-amplify generative errors)

    

xhxl

?
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p(low)                           p(high)
    

69

Distributional Translation via Probabilistic Bridge

xhxl

?

Offline Optimization: 
Learning Low-to-High Meta Transport

OOD 
region

𝑔

in-distribution
designs

Low-to high 
bridge 

.𝑔!

.𝑔"

Syntheticfunctions Learning low- to high-value mapping 
across related functions near the oracle:

    N(𝑔) = 𝑔̅ 𝒙 	|	𝑔̅ 𝒙 ≅ 𝑔 𝒙 	∀𝒙	 ∈ 𝐷

Low  Region: 𝐷# 	= 𝒙 = argmax	𝑔̅ 𝒙 	~	𝐍(𝑔)	

High Region: 𝐷$ = 𝒙 = argmax	𝑔̅ 𝒙 	~	𝐍(𝑔)	

How to learn 𝜽:𝑫# 	→ 𝑫$

(Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)
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p(low)                           p(high)

    

70

Distributional Translation via Probabilistic Bridge

xhxl

?

Offline Optimization: 
Learning Low-to-High Meta Transport

OOD 
region

𝑔

in-distribution
designs

Low-to high 
bridge 

.𝑔!

.𝑔"

Syntheticfunctions
Why sampling multiple functions?

    N(𝑔) = 𝑔̅ 𝒙 	|	𝑔̅ 𝒙 ≅ 𝑔 𝒙 	∀𝒙	 ∈ 𝐷

Population’s wisdom: Independent 
models rarely agree on false optima

(Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)
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p(low)                           p(high)

    

71

Distributional Translation via Probabilistic Bridge

xhxl

?

Step 1: Fit multiple 
GPs using offline data

Step 2: Take GA, GD on 
each GP posterior mean

Step 3: Learning low-
to-high probabilistic 
transport (bridge)

(Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)
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p(low)                           p(high)

    

72

Distributional Translation via Probabilistic Bridge

xhxl

?

Bridge: Gaussian process (GP) conditioned on two endpoints

(Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)
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p(low)                           p(high)

    

73

Distributional Translation via Probabilistic Bridge

xhxl

?

Bridge: Gaussian process (GP) conditioned on two endpoints

(Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)
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p(low)                           p(high)

    

74

Distributional Translation via Probabilistic Bridge

xhxl

?

Bridge: Gaussian process (GP) conditioned on two endpoints

Parameterize target-agnostic transition kernel 𝑝% 𝒙&'(	|	𝒙& ,	𝒙)  
(not knowing 𝒙*)

Learning 𝜃: distilling 𝑞 𝒙&'(|𝒙& , 𝒙*, 𝒙)  into 𝑝% 𝒙&'(	|	𝒙& ,	𝒙) 	
(amortizing over 𝒙*) 

𝜃+, = argmin
%

𝔼 𝒙%,𝒙&,& 𝐷/0 𝑞 𝒙&'(|𝒙& , 𝒙*, 𝒙) 	||	𝑝% 𝒙&'(|𝒙& , 𝒙)                            

closed-form derived from GP bridge
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Experimental Evaluation: Inverse Modeling

Dataset Size Dimensions Categories Type

Ant Morphology 25009 60 N/A Continuous

D’Kitty Morphology 25009 56 N/A Continuous

TF Bind 8 32898 8 4 Discrete

TF Bind 10 50000 10 4 Discrete

RNA-Binding 5000 14 4 Discrete

Benchmark Optimization Tasks:

Trabucco et al, “Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization”, ICML 2022
Lorenz et al, “ViennaRNA Package 2.0”, Algorithms for Molecular Biology 2011
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Experimental Evaluation: Inverse Modeling
Results on Design-bench Results on Biological RNA Tasks

ROOT establishes a new SOTA across a diverse set of benchmark tasks

(Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)
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Experimental Evaluation: Inverse Modeling
Results on Design-bench Results on Biological RNA Tasks

Generating synthetic tasks:

Help identify low- and high-value 
design distributions more reliably

Offline optimization = Learning 
transport between 2 distributions

→ Mitigates data scarcity
     and erratic behavior in OOD

(Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)
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Outline of Tutorial

hIntroduction and Overview

hForward Modeling Approaches

hInverse Modeling Approaches

hTheoretical Analysis

hOffline Optimization in Small Data Setting

hOpen Challenges
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Theoretical Understanding ó Algorithm Design

hExisting theory uses some structural aspect of the oracle 
objective function or the offline data distribution 
5 to explicitly/implicitly characterize the optimization performance

hQ1: Understanding how particular structural aspects 
influence the (worst-case) optimization performance?

hQ2: How such an understanding can be leveraged to 
develop practical algorithms?
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Theoretical Analysis: Forward Modeling

h Kuba et al., Functional Graphical Models: Structure Enables Offline 
Data-Driven Optimization

hMany forward models rely on pessimism/conservatism
5However, strict pessimism limits you to "convex hull" of the 

training data => cannot find anything better than training data

hKey Idea: Exploiting structure helps us find better designs
5 Intuition: if objective function decomposes into smaller, 

interacting components, we can "stitch together" optimal parts 
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Theoretical Analysis: Forward Modeling

hKey assumption: function decomposes additively over 
cliques of the input graph
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Theoretical Analysis: Forward Modeling

hKey assumption: function decomposes additively over 
cliques of the input graph

hRegret (error) bound depends on $
∗(&) 
((&)

 where 𝜋∗(𝑥) is 

the optimal distribution and 𝑝(𝑥) is the data distribution 
over the entire input space
5Naïvely, regret is large because ratio explodes

Using FGM assumption, regret depends only on the 
coverage of the marginals of the cliques 𝐦𝐚𝐱

𝐜
𝝅∗(𝒙𝑪) 
𝒑(𝒙𝑪)
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Theoretical Analysis: Gradient-Type Bound

The optimization quality depends on the discrepancy 
between the surrogate’s and oracle’s gradient structure
    
Let Rs(x) & Ro(x) denote the values of the recommended 
designs via m-step gradient search with step size 𝜆 
using the learned surrogate and oracle, respectively.

Worst-case performance gap: Gm,𝜆 = max | Rs(x) - Ro(x) |

Assume the oracle g(x) is ℓ-Lipschitz and 𝜇-smooth:

             Gm,𝜆  ≤  m𝜆ℓ(1 + 𝜆𝜇)m-1 max ∥ ∇g(x) - ∇g(x; 𝜃) ∥

     

x

x
gradient gap
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Theoretical Analysis: Gradient-Type Bound

The optimization quality depends on the discrepancy 
between the surrogate’s and oracle’s gradient structure
    
Worst-case performance gap: Gm,𝜆 = max | Rs(x) - Ro(x) |

Assume the oracle g(x) is ℓ-Lipschitz and 𝜇-smooth:

             Gm,𝜆  ≤  m𝜆ℓ(1 + 𝜆𝜇)m-1 max ∥ ∇g(x) - ∇g(x; 𝜃) ∥

Key insight: Matching gradient is more robust than matching 
value (see MATCH-OPT (Hoang et al., 2024))

x

x
gradient gap
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Theoretical Analysis: Inverse Modeling

h Li et al., Diffusion Model for Data-Driven Black-Box Optimization 

hAssumption: data lie on low-dimensional (m < d) manifold 
𝑥 = 𝐴𝑧

h Inverse approach: 𝑥∗~	𝑝- 𝑥 𝑦 = 𝑎) where 𝑝-  is learned 
via diffusion model

hRegret depends on three terms:

𝜖+ + 𝜖D + 𝜖E

Estimation 
error On-support 

distribution shift
Off-support Fidelity 

error



AAAI-2026 Tutorial on Black-Box Optimization from Offline Datasets 86

Theoretical Analysis: inverse approach

h Li et al., Diffusion Model for Data-Driven Black-Box Optimization 

hRegret depends on three terms:

5Estimation error: error of not knowing the true objective 
function which depends on latent dimension m

5On-support distribution shift: error of forcing the diffusion 
model to generate samples that might be extremely rare or 
unseen in the training data 

5Off-support Fidelity error: penalty for leaving the manifold 
which is typically low for well-trained generative models

𝜖+ + 𝜖D + 𝜖E



AAAI-2026 Tutorial on Black-Box Optimization from Offline Datasets 87

Outline of Tutorial

hIntroduction and Overview

hForward Approaches

hInverse Approaches

hTheoretical Analysis

hOffline Optimization in Small Data Setting

hOpen Challenges
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The Small Data Challenge

Overfitting and 
extrapolation

Distribution Shift

Prediction Bias

Why Standard ML fails?Why Small Data is Different?

100 
designs

100k 
designs

Labeled training data cover 0.1% of the design space
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The Small Data Challenge

Overfitting and 
extrapolation

Distribution Shift

Prediction Bias

Why Standard ML fails?

Model fits observed 100 
training examples too well 
but fails on unseen regions. 

Solution: Synthetic pretraining on diverse functions 
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The Small Data Challenge

Overfitting and 
extrapolation

Distribution Shift

Prediction Bias

Why Standard ML fails?

Few training examples 
from poor-performing 
regions do not cover the 
optimization landscape 

Solution: Generate synthetic data across full input space
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The Small Data Challenge

Overfitting and 
extrapolation

Distribution Shift

Prediction Bias

Why Standard ML fails?

Standard ML optimizes 
value-matching, not the 
directional signals needed 
for optimization 

Solution: Optimize for gradient matching, not value matching
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Small Data Regime: Two Approaches

ExPT: 
Synthetic Pretraining 
for Few-Shot 
Experimental Design

OptBias:
Surrogate Learning 
with Optimization 
Bias via Synthetic 
Task Generation

Let us explore how each approach tackles 
the small data challenge
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ExPT: Synthetic Pretraining for Few-Shot 
Experimental Design

• Pretraining: Model learns optimization patterns from 
unlabeled designs across domains.

• Adaptation: Model conditions on few (design, score) 
pairs and target z* to generate optimal design x*.

[Tung et al., 2024]
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ExPT: Synthetic Pretraining for Few-Shot 
Experimental Design

Goal: Create diverse synthetic functions that cover 
different optimization landscapes

Random 
Function 
Selection
Sample g ~ G

Generate Design 
Points
Sample x uniformly 
across input space

x ~ Uniform(bounds)

Covers diverse 
regions, not just 
near optima

Evaluate 
Function
z = g(x; 𝜃)

Create pairs 
(x, z)
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ExPT: Synthetic Pretraining for Few-Shot 
Experimental Design

[Tung et al., 2024]
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OptBias: Black-Box Optimization from Small 
Offline Datasets via Meta Learning

• Problem: With only 1% 
training data, gradient 
estimation error is very 
high (red bar)

• Solution: OptBias 
reduces this through 
better synthetic data 
generation and meta-
learning
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Overview of OptBias

Gaussian process posterior
via real small offline data

Sample synthetic function

(𝒙ଵ, 𝑧ଵ) …(𝒙ଶ, 𝑧ଶ) (𝒙௞, 𝑧௞)

Gradient-ascent trajectory

Sim4Opt Synthetic Data Generator Meta Learning for 
Gradient Matching

(𝒙ଵ, 𝑧ଵ)
(𝒙ଶ, 𝑧ଶ)…
(𝒙௡, 𝑧௡)

Fine-Tuning on Small 
“real” Offline Data

Gradient Search

Fine-tuned surrogate

+
𝒙 Initial design

…

Optimized design

𝑥

Key Idea: OptBias uses Sim4Opt to generate oracle-like synthetic 
functions, then applies meta-learning with gradient matching to align the 
surrogate with the true oracle's gradient field
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Overview of OptBias

1% of

D

Gaussian 
process

Mean 
Function

Gradient 
Algorithm

GA

GD

GA

GD

low 
samples

High 
samples

low 
samples

D’

Step 1: Synthetic data generation

𝐺𝑃+

𝐺𝑃F

High 
samples

Synthetic  data
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Overview of OptBias

Match-Opt Meta-
Learning

Support Set

Target Set

1% of 
𝒟GHHI!FJ

Finetuning

Finetuned 
Model 𝔾_𝜙

Update

Gradient 
Search

𝑥
=
𝑥
+
∇(
𝔾
_𝜙
)

Step 2: Training meta learning model  
via MATCH-OPT Loss

Step 3: Gradient Search
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ExPT vs. OptBias

Attribute ExPT OptBias

Key Strategy Synthetic pretraining 
+ inverse modeling

Synthetic Pretraining 
+ meta-Learning

Data Generation Random GP 
sampling from 
unlabeled data

GP posterior with 
gradient -ascent

Model architecture Transformer encoder 
+ VAE decoder

Neural surrogate 
with meta learning

Optimization Focus Predict optimal 
designs directly

Learn gradient field 
to guide search 
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Experimental Evaluation: ExPT vs. OptBias
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Outline of Tutorial

hIntroduction and Overview

hForward Approaches

hInverse Approaches

hTheoretical Analysis

hOffline Optimization in Small Data Setting

hOpen Challenges
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Open Challenges: #1 Better Benchmarks

hCurrent benchmarks (e.g., DesignBench) have served the 
community but important to set up new benchmarks 
with best practices  
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Open Challenges: #1 Better Benchmarks

5Setting up benchmarks require significant effort due to specific 
software requirements and dependency issues

g Better tooling (see Bencher by Leonard Papenmeier and Luigi Nardi)

5Construction of surrogate models as Oracles for evaluation
g Add explicit constraints

5Synthetic objective functions that are related to real-world 
problems

g e.g., Ehrlich functions for biological sequence design
5Policy of collecting offline datasets

g Ideally, should be related to real-world data collection
g Random policies are not always a sound choice
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Open Challenges: #1 Better Benchmarks

hEvolve benchmarks over time to avoid overfitting
5Procedurally generated benchmarks
5Lots of new ideas in LLM/GenAI literature
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Open Challenges: #2 Hyperparameter Tuning

h Important requirement to only use offline dataset
5Leverage ideas from offline RL (e.g., see Nie et al., Data-Efficient 

Pipeline for Offline Reinforcement Learning with Limited Data)

hBetter methods for uncertainty quantification tied to the 
end-goal of design
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Open Challenges: #3 Multi-Objective Optimization

h Important, but highly under-studied problem setting
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Summary of Tutorial

hIntroduction and Overview

hForward Approaches

hInverse Approaches

hTheoretical Analysis

hOffline Optimization in Small Data Setting

hOpen Challenges

Nascent but important area. Lot more work 
needs to be done. Please join and contribute J  
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