Black-Box Optimization from Offline
Datasets: Foundations to Recent Advances
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Outline of Tutorial

° Introduction and Overview

° Forward Modeling Approaches

° Inverse Modeling Approaches

°* Theoretical Analysis

° Offline Optimization in Small Data Setting

° Open Challenges
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Applications: Drug Discovery

Drug discovery Preclinical Assessment Clinical Development
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3-5 years 1-3 years 4-6 years

° Lot of costly experiments at every stage

* The Drug Development Process. U.S. Food and Drug Administration (FDA)

V.
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mailto:https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process

Applications: Nanoporous Materials Discovery

\

organic inorganic

° Costly experiment to make
and evaluate each MOF

linkers nodes
@
Storing gases Capture gases Catalysis, Drug Delivery
(e.g., hydrogen powered (e.g., carbon dioxide otc
cars) power plants) '

Addin * Yaghi, Omar M. Reticular chemistry in all dimensions. ACS Central Science.
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Applications: Next-Generation Hardware Design
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America’s Data Centers Are Wasting Huge o
Amounts of Energy* Energy-efficient hardware
* Report from Natural Resources Defense Council accelerators

* Expensive computational simulations
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Offline Optimization: Problem Definition

° Given
~ Black-box objective function
m e.g., wet-lab experiments, real-world health interventions
“ Design space
m Focus on high-dimensional or structured design spaces

m e.g., space of proteins, materials, AutoML configurations

° Goal: Find (nearly) optimal designs with one or very few
batches of evaluations using the objective function

~ “offline” refers to access to prior logged datasets
“~ Sometimes also referred to as “data-driven”

V.



Offline Optimization: Problem Definition

° Goal: Find (nearly) optimal designs with one or very few
batches of evaluations using the objective function
~ “offline” refers to access to prior logged datasets
“ Sometimes also referred to as “data-driven”

O

No or limited additional interaction

m y > | optimization from desi
Experimenter Design Space Ofﬂme Ofﬂine datasets eSIgnS
Qcientist/Engineer) J training data

V.



Motivation: AutoML for Foundation Models

°* Foundation models require significant resources for
pretraining and finetuning
“ e.g., months of training and millions of dollars for pre-training

° Goal: find optimal configurations (e.g., hyper-parameters,
data pipelines, data selection) while minimizing resources

“ Leverage “offline” data from prior configurations of in-house
and/or open-source models

Tasks
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A Credit: https://www.labellerr.com/blog/beginners-guide-using-foundation-models-in-ml-projects/



Motivation: Safe Healthcare Strategies

° Discover optimal parameters for healthcare devices

~ e.g., brain-modulation device

° Safety/regulation requirements prohibit online exploration

° Goal: find optimal parameters for continued home usage

~ Leverage “offline” data from logs of prior in-clinic usage under
careful attention of experts/doctors

Deep Brain Stimulation
(DB




Motivation: Hardware Accelerators

°* Growing need of application-specific hardware accelerators
in shorter timescales
“ Potentially, avoid the use of time-consuming simulations

° Goal: find optimal application-specific hardware accelerators
~ Leverage “offline” data of previously tested accelerator designs

| . - S ,/
One-Time | o ! o
Collected Dataset : Conservative : Optimizers ) Optlmlzed
(TPU, NVDLA ShiDianNao)‘Leamed Model,; , Hardware Accelerators

Kumar et al., Offline Optimization for Architecting Hardware Accelerators, ICLR 2022
hbibin
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Motivation: Climate-Smart Agriculture

° Growing need for adoption of climate smart strategies

° Excessively long timeframes for farmers to see agricultural
vield (objective) based on chosen strategy (search space)

° Goal: find optimal climate-smart designs from previously
tested strategies

o |



Many Science and Engineering Applications

° Biological sequence design

“ Protein sequence design

m Takizawa et al., Safe model-based optimization balancing
exploration and reliability for protein sequence design

~ Cell-type promoter sequence design

m Reddy et al., Designing Cell-Type-Specific Promoter Sequences
Using Conservative Model-Based Optimization

* Antibody design

°* Nanoporous materials design

V. 12



Offline Optimization vs. Online Optimization

° Offline Optimization: Find (nearly) optimal designs with one
or very few batches of evaluations via objective function
~ “offline” refers to access to prior logged datasets

° Online Optimization: has access to large iterative rounds of
access to true objective function

° Relevance of Offline setting to Online setting
~ Selection of initial batch (e.g., aSCR and LEON)
“ Last round of online optimization

“ Problem setting with large batches per evaluation round

*aSCR: Generative Adversarial Model-Based Optimization via Source Critic Regularization, NeurlPS 2024

*LEON: Knowledgeable Language Models as Black-Box Optimizers for Personalized Medicine, arXiv:2509.20975

V. 13



Bayesian Approaches for Black-box Optimization

° Bayesian approaches (BO) are SOTA for online optimization

° Bayesian decision theory allows optimal decision making!
“ One round optimal decision-making is “Expected Improvement”

°* These approaches rely on Bayesian inference or principled
uncertainty quantification

~ Active research area in high-dimensional design spaces

* Key BO references relevant to this tutorial:

“ TurBO: Scalable Global Optimization via Local Bayesian Optimization (NeurlPS-19)
“ FocalBO: Scalable Bayesian Optimization via Focalized Sparse GPs (NeurlPS-24)

V. 14



Nuances of Online Optimization

° (Physics/Knowledge-based) Digital Simulators
“ Expensive in terms of computational resources
m e.g., physics simulations, hardware simulator, crop Simulator
“ Pros: Can be evaluated online for multiple rounds

“ Cons: Not always available and still a proxy (i.e., applicable within
knowledge-domain)

° Physical Real-world Experiments
~ Significantly more expensive in multitude of resources (e.g.,
computational, human, monetary, regulatory)

m e.g., wet-lab experimentation (weeks/months), making a chip in
a fab (months), real-world agriculture practices (months/years),
Foundation models (months)

// Prier data from human trial-and-error approaches is available
A. 15



Outline of Tutorial

° Introduction and Overview

° Forward Modeling Approaches

° Inverse Modeling Approaches

°* Theoretical Analysis

° Offline Optimization in Small Data Setting

° Open Challenges
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Forward Modeling: Big Picture

/
@ Gy} i€(1,..D) Black-box Optimized
m > | optimization from desi
Experimenter Design Space Ofﬂme Ofﬂine datasetS eSIgnS
\(Scientist/Engineer) j training data

° Step 1: Training a surrogate model

{(x,y)} i €{1,..D} =

Offline training data

° Step 2: Gradient based search from best training designs

/Nl ;



Forward Modeling: Big Picture

° Focus on (1) modeling surrogate:

g(design) = performance
X Z

and/or (2) search procedure:

[I(design; g) = design update
X AX

Challenge: g(x) is erratic when x is far from offline data

V.
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Forward Modeling: Big Picture

° Focus on (1) modeling surrogate:

g(design) = performance
X Z

and/or (2) search procedure:

[I(design; g) = design update
X AX

[1(x; g): estimate the trust region where g(x) is reliable

V.

and avoid venturing outside it

19



Forward Modeling Approaches: Summary

1. Conservative Surrogate. Fit a surrogate to offline data while
decreasing its prediction for OOD (out of distribution) designs

2. Smoothness-aware Surrogate Ensemble. Fit a neighborhood of
surrogates to offline data & perform search at each step with one that
is smoothest at the current design

3. Minimizing Surrogate Sensitivity. Fitting a surrogate while minimizing
output sensitivity under random model perturbations

4. Using In-Distribution Critic. Fitting a surrogate and finding its optima
where the critic determines in-distribution with high confidence

5. Gradient Matching. Learning gradient curvature instead of matching
/biective function output (relative ordering is all that matters!)

A .



COMS: Conservative Surrogate [Trabucco et al., 2021]

Offline Data Collection. Optimization. Refine with
— gradient
(o] T
% <—m X t Eq. 4 L
‘ Inputs >O opt
Optimized Estimated
q inputs objective
% ﬁ I:'t Static Conservative
? q dataset / Training
Batch of - T
Objective values data

OOD set collected via early

gradient ascent on g(x; 0)
standard MSE

6 = argmin E 4 -pl (9(x; 8) - 2)*] +
2a(Ex-,[9(x; 6)] = Ex-plg(x; 0)])

OOD average is discouraged to be larger

// 5.V than in-distribution average
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ROMA: Smoothness-Aware Surrogate Ensemble

LD

Solution update

- = N
/’_~‘\ a‘l-(f) ............................. [S
----J\:v+(5,t----> [ >
Gaussian noise Optimization Model adaptation
s

: . —~ :
Offline dataset 0cB(0) f(z;0) f(x;6,)
Weight perturbation
(N J\. J
Step 1. Pre-training Step 2. Model adaptation and solution update

Ensemble loss
(prediction loss of the worst surrogate in the neighborhood)

L(6) =max Ex z-p Eu-np, o[ (9(X +U; 8) - Z)?]
6’ € B(6)

Neighborhood: 68’ € B(@) means || 8 — 8" | <l 6 |l

// D ROMA (Yu et al., 2021)
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Smoothness-Aware Surrogate Ensemble

£(t+1)

Solution update

- = N
/’_~‘\ a‘l-(f) ............................. [S
----J\:v+(5,t----> [ >
Gaussian noise Optimization Model adaptation
s

: . —~ :
Offline dataset 0cB(0) f(z;0) f(x;6,)
Weight perturbation
(N J\. J
Step 1. Pre-training Step 2. Model adaptation and solution update

Test-Time Adaption: Choose the surrogate with maximum local
smoothness to guide the next search step

0.1 =min || Vg(x; 8) I + a(g(x; 8) - g(x; 6;)) => smoothest model

X = x + ¢Vg(x; 8:) => step-wise update with selected model

//A”‘““ ROMA (Yu.et al., 2021)
23



Minimizing Surrogate Sensitivity

'____________ﬂl I |
| o
| [ 4 I [ 4 W |
| oo = | : OJ — =i |
| Surrogate Search | | Perturbation Surrogate Search l
I I I
| Model Model | : Model Model Model |
I I I
| Sensitivity Metri | |
| | ensitivity Metric
I
| L X & ] (seeEq. (4) (X ] & |

(a) Existing Offline Optimizer (b) Boosting Offline Optimizers with Surrogate Sensitivity

minimize loss({, () minimize [loss({', ) + max regularizer(¢ , 0 )]

BOSS (Dao et al., 2024a), IGNITE (Dao et al., 2024b)

Surrogate Sensitivity: The chance that the expected output of the model
changes significantly under random model perturbation

S(a, w) =P, (A(0,u) = a) where A(0, u) = |E[g(x; 8 +u)] — E[g(x; 0)]|
and u ~ N(O, wl)

V. .



Minimizing Surrogate Sensitivity

I I
I I >
| [ 4 I [ 4 [ 4 |
| | : yp i l
I 2 e | I 2 :
: Surrogate Search : | Perturbation Surrogate Search |
| Model Model | : Model Model Model |
| L l | g . |
| | Sensitivity Metric I
I
| (X & || (seekq. (4) L (X d |

(a) Existing Offline Optimizer (b) Boosting Offline Optimizers with Surrogate Sensitivity

minimize foss(¢, €)  minimize [loss(& ,€") + max regularizer(© 1 )]

BOSS (Dao et al., 2024a), IGNITE (Dao et al., 2024b)

Surrogate Sensitivity: The chance that the expected output of the model
changes significantly under random model perturbation

0 = argmin L(6) + A S(a, w)

V. .



GABO: Using In-Distribution Critics

In-Distribution Critics: The chance that the expected output of the model
changes significantly under random model perturbation

c'(.) =argmax E, _p[c(x’)] - Ex - q[c(x)]

Constrained Optimization: Minimize g(x; 8) where c(x) often determines
in-distribution with high confidence:

minimize -g(x; 0)

subjectto E,. - p[c'(X)] —c(x) < 0

GABO (Yao et al., 2024)

V. .



MATCH-OPT: Gradient Matching

Gradient Matching: Learning gradient curvature instead of matching
objective function output values (relative ordering is all that matters!)

Sampling Monotonic

Training Surrogate Model

Input Sequences via MATCH-0PT objective

V.

Offline Dat N |

. Initial Design ‘ @ e
y Surrogate .
'z {0} value matching {0} gradient matching Model <
t : (Learned) I

______ surrogate target
/A/kA > gradient gradient ey 4
a N e fent
al || A mio-an & w0l & i

Optimizing
Designs

MATCH-OPT (Hoang et al., 2024)
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Gradient Matching

Intuition:
(1) gradient error leads to compounding search errors
(2) gradient error can be subsided via explicit gradient

matching

Empirical verification on 4D Shekel function
(1) train ~ N(O, I)
(2) test ~ N(O, al) (i.e., OOD testing inputs)

Observation: Gap widens with optimization steps
— less error compounding in OOD regions.

V.

Gradient Error

Gradient Error

a=0.1

0.3 -

-t Regression
wa Match-Opt

0 500 1000

Input ID

28



Gradient Matching: Intuition

Key Idea: Learn the dynamics of optimization, not just function values

Gradients do not align Gradients align with
with optimization path optimization path

Adbin

A 29
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Gradient Matching Approach: The Recipe

A. Sample monotonic trajectories (low = high performance)
— Learn optimization-aligned gradients, not just function values

B. Match integrated gradients with gradient-alignment loss
— Generalizes better in high-value regions

C. Combined MSE + gradient loss
— Closes the prediction-optimization gap of standard surrogates

V.
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Gradient Matching via Line Integration Theorem

Gradient Match Loss

Use line integration theorem,
/ / T 1 /
Az=7 —z = (xX'—=x) [, Veg(tx' +(1—1t)x)dt

(' =0T [V, g(tx' + (1 — )x; $) dt

Q

Gradient Match Loss:
(1) sampling a no. of offline training pairs (x, z) and (x’, z')

(2) minimize the (averaged) gap between (A) and (B)

// D MATCH-OPT (Hoang et al., 2024)
A y



PGS: Policy-Guided Search via Offline RL

Key Idea: Learn a policy using offline RL to correct gradient errors

Policy Learning PGS Execution
/ ;znibt: Surrogate model fy (x)\ / o \
o (xo)
Trajectories Y from Top Percentile Data Q%
(1, ¥1) Policy (%)
(X, ¥n) iyt T
Difiine % a= aOfst’in—e )RcL Da:‘a—Af(x ) — f(x;) > LELel
dataset D — | R4 - | R4 T" i+1 - ( l+1) L
< =X = A = - = N =
S i .2 Xie1 = X1+ @ VF (D)

@ s.t. a; = n(xi)
\ Offline RL Algorithm / \ /
//: hdiin PGS (Chemingui et al., 2024)
32




Experimental Evaluation: Forward Modeling

Benchmark Optimization Tasks:

_m

Ant Morphology 25009 Continuous
D’Kitty Morphology 25009 56 N/A Continuous
TF Bind 8 32898 8 4 Discrete
TF Bind 10 50000 10 4 Discrete
RNA-Binding 5000 14 4 Discrete

Trabucco et al, “Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization”, ICML 2022
Lorenz et al, “ViennaRNA Package 2.0”, Algorithms for Molecular Biology 2011

/AM 33



Experimental Evaluation: Forward Modeling

Normalized performance of at 100-percentile

METHOD ANT DKitTty HopPPER SCON TF8 TFI10 MNR
GA 0.271 0.895 0.780 0.699 0.954 0.966 0.600
ENS-MEAN 0.517 0.899 1.524 0.716 0.926 0.968 0.500
ENS-MIN 0.536 0.908 1.420 0.734 0.959 0.959 0.467
CMA-ES 0.974 0.722 0.620 0.757 0.978 0.966 0.367
MINS 0910 0.939 0.150 0.690 0.900 0.759 0.700
CBAS 0.842 0.879 0.150 0.659 0916 0.928 0.733
ROMA 0.832 0.880 2.026 0.704 0.664 0.820 0.667
BONET 0.927 0.954 0.395 0.500 0911 0.756 0.683
COMS (.885 0.953 2.270 0.565 0.968 0.873 0.467

MATCH-OPT (0931(2) 0957(1) 1572(3) 0.732(3) 0977(2) 0924(6) 0.283(1)

Observations:

(1) no method is best in more than 2 task domains

(2) MATCH-OPT is in top-3 in 4/6 tasks; more reliable
D (3) MATCH-OPT achieves best mean normalized rank

/A MATCH-OPT (Hoanget-al., 2024) 5,



Outline of Tutorial

° Introduction and Overview

° Forward Modeling Approaches

° Inverse Modeling Approaches

°* Theoretical Analysis

° Offline Optimization in Small Data Setting

° Open Challenges

V.



Inverse Modeling: Big Picture

° Focus on modeling p(design | performance)
X z=> A

° How to redistribute mass from the data distribution
toward regions associated with high performance?

?
p(design) ' - p(design | performance)
X X Zz=A

V.
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Forward vs. Inverse Modeling

° How to redistribute mass from the data distribution
toward regions associated with high performance?

?
p(design) ' - p(design | performance)
X X A

° (Forward) Geometric vs. (Inverse) Distributional view

local gradient Vg(x) data distribution p(x)

edit policy: x — Ax predictive uncertainty p(z | x)
neural surrogate z = g(x) generative modeling
reinforcement learning probabilistic prediction

V. ,



Inverse Modeling: A Unified View

p(de)s(ign) ? : p(deg(ign | pe;fgranance)
° Unified view (w/ different instantiations):
p(x | z=4) = p(z=24]x)p(x)/p(z=4)
X p(z= A | x) p(x) [Bayes Theorem]
where p(x) can be learned via deep generative modeling
pz=A|x)=E[(z=4) |z~ pD(ZTI x)]

probabilistic prediction

) (learned from offline data)
Abdin
//A 38



Inverse Modeling: A Unified View

o
p(design) : - p(design | performance)
X X A

° Unified view (w/ different instantiations):
p(x | z=4) = p(z=24]|x)p(x)/p(z=4)
X p(z=A | x) p(x) [Bayes Theorem]

p(x) and p(z = A4 | x) can be estimated but exact
computation of p(x | z= A) remains intractable

V. ,



Inverse Modeling: A Unified View

p(design) ? - p(design | performance)
X X A
° Unified view (w/ different instantiations):
p(x |z=4) = p(z=2|x)p(x)/p(z=4)
X p(z= A | x) p(x) [Bayes Theorem]

p(x) and p(z = A4 | x) can be estimated but exact
computation of p(x | z= A) remains intractable

Inverse modeling: Different approaches to approximate
p(x | z= A) with a parametric distribution

VN .




DBAS: Design by Adaptive Sampling

5
p(design) : - p(design | performance)
X

X Z>A

° Design by Adaptive Sampling (DBAS) [Brookes & Listgarten, 2018]

0 = argmin KL(p(x | z= 4) |l p(x; 8))
= argmin E[-log p(x; 0) * p(z = 4 | x) | x ~ p(x]]

~ argmin E[-log p(x; 0) * p(z =4 | x) | x ~|D(x)

]

empirical data
distribution

V.
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DBAS: Design by Adaptive Sampling

?
p(design) : - p(design | performance)
X

X

z>A

° Design by Adaptive Sampling (DBAS) [Brookes & Listgarten, 2018]

0 = argmin KL(p(x | z= 4) |l p(x; 8))

= argmin E[-log p(x; 8) * p(z= A4 | x) | x ~ p(x]]

~ argmin E[-log p(x; ) *(p(z = 4 | x)

| x ~ D(x)]

too close to zero when 4 is large

V.

and x ~ p(x) = D(x) — learning collapses!
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DBAS: Design by Adaptive Sampling

?
p(design) : - p(design | performance)
X X A

° Design by Adaptive Sampling (DBAS) [Brookes & Listgarten, 2018]

Annealing (raising A slowly) to avoid learning collapse

Or+1 = argmin E[-log|p(x; 0)* p(z = Ari1 | x) | x ~{p(x; O]

8 | |

(learnable) present (frozen) generative model
generative model from previous step

V. \




DBAS: Design by Adaptive Sampling

o
p(design) : - p(design | performance)
X X A

°* Design by Adaptive Sampling (DBAS) [Brookes & Listgarten, 2018]

Generative model representation:
must be differentiable and can be sampled from

For example, variational auto-encoder (VAE):

log p(x; 8) = Ey(, | x. pllog p(x | z; 8)] = KL(a(z | x; ¥) Il p(z))
denoising noising noise

V. )



DBAS: Design by Adaptive Sampling

o
p(design) : - p(design | performance)
X X A

sample can be drawn via (1) sampling (Gaussian) noise;
(2) simulating denoising

For example, variational auto-encoder (VAE):

log p(x; 8) = Ey(, | x. pllog p(x | z; 8)] = KL(a(z | x; ¥) Il p(z))

denoising noising noise

V. )



CBAS: Conditional by Adaptive Sampling

?
p(design) : - p(design | performance)
X X A

° Conditional by Adaptive Sampling for Robust Design
(CBAS) [Brookes and Listgarten, 2019]

Issue with annealing DBAS:
Ot11 = argmin E[-log p(x; 0) * p(z = A¢ 1 | X) | x ~ plx; 6¢)]
= argmin KL(p(x | z= 441) Il p(x;6;))

//Aam(eroding the anchor to D(x) — error might be amplified)

46



CBAS: Conditional by Adaptive Sampling

o
p(design) ~—— p(design | performance)
X X zZ=A

° Conditional by Adaptive Sampling for Robust Design
(CBAS) [Brookes and Listgarten, 2019]

Anchoring to D(x) (data distribution) via
simple re-parameterization:

Ory+1 = argmin E[-log p(x; 8) * p(z = A1 | %) | x ~ D(x)]

= argmin E[-log p(x; ) * (p(z = 4.1 | x) * D(x) / p(x;0,))]

i X~ p(x;6y)
Y/ | \



Limitations of DBAS/CBAS

o
p(design) : - p(design | performance)
X X A
° Fundamental limitations of DBAS/CBAS:
p(x | z=A) « p(z= 4| x) p(x)

what happens when a high-value regime D,
is not well-supported, i.e., p(x) =~ 0 when x belongs to D,,?

DBAS/CBAS only reshape within existing support
(i.e., cannot expand support)

V. )




BONET: Generative Pretraining

?
p(design) » p(design | condition)
X X C

° Generative Pre-Training for Offline Optimization (BONET)
[Mashkaria et al., 2023]

Alternatively, BONET characterizes condition as a generative
path, i.e., condition = (r(1), x(1), ..., r(p), x(p), r(p + 1))
where r(i) = (f(x«) — f(x(i)) + ... + (f(x+) — f(x(7)) -- regret

p(x(p+1) | r(p+1); 0)=E[p(x(p+1), c|r(p+1);8)] ]
= E[ITE_plx(p + 1) | r(1:p + 1), x(1: p) ; O}

auto-regressive model

(i.e., transformer)
bbibin
Y/ )




BONET: Generative Pretraining

?
p(design) » p(design | condition)
X X C

° Generative Pre-Training for Offline Optimization (BONET)
[Mashkaria et al., 2023]

Alternatively, BONET characterizes condition as a generative
path, i.e., condition = (r(1), x(1), ..., r(p), x(p), r(p + 1))
where r(i) = (f(x«) — f(x(i)) + ... + (f(x«) — f(x(7)) -- regret
# optimization steps
Learn: maximizing log p(x(p + 1) | r(p + 1); 8) via
\Y,
maximizing Ec[log ]_[f:1 p(x(p+1) | r(1:p+1), x(1:p); 9)]

/ . The condition ¢ can be sampled from offline data
h
50



BONET: Generative Pretraining

?
p(design) » p(design | condition)
X X C

° Generative Pre-Training for Offline Optimization (BONET)
[Mashkaria et al., 2023]

Alternatively, BONET characterizes condition as a generative
path, i.e., condition = (r(1), x(1), ..., r(p), x(p), r(p + 1))
where r(i) = (f(x«) — f(x(i)) + ... + (f(x«) — f(x(7)) -- regret

# optimization steps

Generate: 1. sample c
2.setr(p+1)=r(small value)
3.generate x(p+ 1) viap(x(p+1) | r(1:p +1),x(1:p); 0)
4. repeat step 2 with p++ and same r

V. 51



Limitation of BONET

5
p(design) : - p(design | condition)
X X c

° Fundamental limitation of BONET:

p(design | condition) only generalizes well along paths
that are similar to observed condition in offline data

i.e., learning is ill-conditioned in regimes of condition w/o
support from the data distribution

V. .



Limitations of DBAS/CBAS

?
p(design) : - p(design | performance)
X X A
° Fundamental limitations of DBAS/CBAS (recap):
p(x | z=A) « p(z= 4| x) p(x)

DBAS/CBAS only reshape within existing support
l.e., cannot expand support

Motivation for using diffusion:
A diffusion model guarantees support almost everywhere

V. .



Limitations of DBAS/CBAS

?
p(design) : - p(design | performance)
X X A

° Fundamental limitations of DBAS/CBAS:
px | z=4) x p(z=4 | x) p(x)

Even with diffusion base p(x), DBAS/CBAS still reweights
on rare event as p(z = A | x) is applied post generation

i.e., less mass gets shifted to high-value regimes that
have originally low support
I (even when p(z = A | x) suggests high potential)

A 54




DDOM: Denoising Diffusion Optimization Model

o
p(design) : - p(design | performance)
X X A

° Guided Diffusion: Denoising Diffusion Optimization
Model (DDOM) [Krishnamoorthy et al., 2023]

1. Can expand support flexibly

2. Incorporate reweighting within generation process
(guided generation to accelerate mass relocation)

(mass can be moved to previously unsupported regions)

V.
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DBAS/CBAS vs. DDOM

?
p(design) : - p(design | performance)
X X A

° DBAS/CBAS represents (noising, denoising) via
separately parameterized encoder & decoder
(do not guarantee p(x) having support almost everywhere)

- DDOM represents (noising, denoising) via SDE and
its induced reverse-time SDE

"V

the relationship is provable rather than approximated via
learning (compared to VAE)

V. )



DDOM: Denoising Diffusion Optimization Model

o
p(design) : - p(design | performance)
X X A

° Guided Diffusion: Denoising Diffusion Optimization Model
(DDOM) [Krishnamoorthy et al., 2023]

Noising via forward SDE from x(0) ~ D(x)
dx(t) = u(x(t), t) dt + g(t) dw(t) where|dw(t) ~ N(O, dt)

Brownian motion

V. ,



DDOM: Denoising Diffusion Optimization Model

o
p(design) : - p(design | performance)
X X A

° Guided Diffusion: Denoising Diffusion Optimization Model
(DDOM) [Krishnamoorthy et al., 2023]
Noising via forward SDE from x(0) ~ D(x)
dx(t) = u(x(t), t) dt + g(t) dw(t) where|dw(t) ~ N(O, dt)

Brownian motion

-1/2 g(t) positive, monotonic

Appropriate choices of u(x(t), t) and g(t) guarantee
X(t) is distributed by N(O, I) when t is sufficiently large

V. )



DDOM: Denoising Diffusion Optimization Model

o
p(design) : - p(design | performance)
X X A

° Guided Diffusion: Denoising Diffusion Optimization Model

(DDOM) [Krishnamoorthy et al., 2023]
Noising via forward SDE from x(0) ~ D(x)
dx(t) = u(x(t), t) dt + g(t) dw(t) where dw(t) ~ N(O, dt)

Denoising via reverse-time SDE from x(T) ~ N(O, I)
dx(t) = (u(x(t), t) - g(t)* Vlog p(x(t))) dt + g(t) dw(t)

where dw(t) is reverse Brownian

//Am p:(x(t)) is marginal of x(t) in forward SDE
59



DDOM: Denoising Diffusion Optimization Model

?
p(design) : - p(design | performance)
X X A

° |dea #1: Classifier-guided diffusion (not yet what DDOM does)
[Dhariwal and Nichol, 2021]

1. Given u(x(t), t) and g(t), learn Vlog p.(x(t)) via score matching

2. Augmenting with p(z = 4 | x(t))
Viog pi(x | z= A) = Vlog p(x(t)) + Vlog p(z =4 | x(t))

V. )



DDOM: Denoising Diffusion Optimization Model

o
p(design) : - p(design | performance)
X X A

° |dea #1: Classifier-guided diffusion

3. sample high-value designs via simulating:
dx(t) = (u(x(t), t) - g(t)> Vlog py(x(t) | z = 4)) dt + g(t) dw(t)

Boils down to estimate score Vlog p.(x(t))
and augment it with p(z = 4 | x(t)) — the rest is fixed

V. 61



DDOM: Denoising Diffusion Optimization Model

o
p(design) : p(design | performance)
X X zZ=A

° |ssue with idea #1:

Dependent on learning p(z | x) accurately

1. p(z | x) might not generalize well along the diffusion path
(due to limited data)

2. p(z | x) requires accurate uncertainty quantification
(less reliable with large model)

V. .



DDOM: Denoising Diffusion Optimization Model

o
p(design) : - p(design | performance)
X X A

° Guided Diffusion: Denoising Diffusion Optimization Model (DDOM)
[Krishnamoorthy et al., 2023]

|dea #2: Classifier-free diffusion (what DDOM does)
[Ho and Salimans, 2022]

1. Given u(x(t), t) and g(t), learn Vlog p.(x(t)) via score matching

2. Aim to sample from p(x(t) | z(0) = A)

// ¥ rather than p(x(t) | z(t) = 4)
A 63



DDOM: Denoising Diffusion Optimization Model

o
p(design) : - p(design | performance)
X X A

° |dea #2: Classifier-free diffusion (what DDOM does)
[Ho and Salimans, 2022]

2. Note that conditional score matching
Vlog p(x(t) | z(0)) = E[[VIog p(x(t) | x(0)){| x(t), x(0), z(0)]

where (x(0), z(0)) ~ D
X(t) is sampled via simulating SDE from x(0)

V. )



DDOM: Denoising Diffusion Optimization Model

o
p(design) : - p(design | performance)
X X A

|dea #2: Classifier-free diffusion (what DDOM does)
[Ho and Salimans, 2022]

2 Note that does not involve p(z | x) ©
Vlog p(x(t) | z(0)) = E[VIog p(x(t) | x(0))|| x(t), x(0), z(0)]

where (x(0), z(0)) ~ D
X(t) is sampled via simulating SDE from x(0)

V. .



DDOM: Denoising Diffusion Optimization Model

o
p(design) : - p(design | performance)
X X A

° |dea #2: Classifier-free diffusion (what DDOM does)
[Ho and Salimans, 2022]

3. sample high-value designs for a performance level
z(0) = A via simulating:

dx(t) = (u(x(t), ) - g(t)? s(x(6),t, ) dt + g(t) dw(t)

where s(x(t),t,4) = a Vlog p(x(t) | x(0)) +
(1-a) Viog p(x(t) | z(0) = 4)

V. )



DDOM: Denoising Diffusion Optimization Model

o
p(design) : - p(design | performance)
X X zZ=A

° |ssue with idea #2 (DDOM)

Due to limited offline data, the score network s(x(t),t, 1)
might only see low value of 4 = z(0) and cannot generalize
well during sampling when we want to condition on high 4

We need more explicit mechanism to mitigate data scarcity

V. ,



Low-to-High Value Design Translation

p(low) ? p(high)
X X,

°* New Perspective: Generative Meta Optimization

1. Generate similar synthetic functions and their

corresponding low- and high-value regimes
(to mitigate data scarcity)

2. Learn direct, meta-transport between the unionized
low- and high-value design regimes of all functions
(sidestep guided diffusion, de-amplify generative errors)

/Nl )



Distributional Translation via Probabilistic Bridge

?
p(low) - p(high)
X Xh
N
A
. f(//7 fb@f/c
Low-fo high g1 C\"/o Learning low- to high-value mapping
bridge _ -
- across related functions near the oracle:

N(g) ={g(x) | g(x) = g(x) Vx € D}

OOD
region

in-distribution

| designs Low Region: D_ = {x = argmax g(x) ~ N(g) ]

s  High Region: D, = {x = argmax g(x) ~N(g) }

Offline Optimization:

Learning Low-to-High Meta Transport Howtolearn 6:D_ — D,

AhAA

A 6

// . (Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)



Distributional Translation via Probabilistic Bridge

?
p(low) > p(high)
X X,
S
A §7
. f(//7/7f/7@f/'
Low-to high | g Cf/b C
bridge _ - ! 7ls

Why sampling multiple functions?

N(g)={g(x) | g(x) = g(x) Vx € D}

OOD
region

in-distribution
| designs

Population’s wisdom: Independent
> models rarely agree on false optima

Offline Optimization:
Learning Low-to-High Meta Transport

(Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)

A .



Distributional Translation via Probabilistic Bridge

? i
p(low) : - p(high)
X X

XaAk .

[ * ngh-_value region { i‘%* :* ‘~~\Proba bilistic
1 vV, g(x) 1 e ™, bridge

\ 2%
0 _ // \\‘ 1 N

N / -V, g(x) - w0 xl" /\\
23 (]
1 1 X RS ¥
X 2
2 05 0 05 1 2 05 0 05 1
T X

Step 1: Fit multiple ~ Step 2: Take GA, GDon  Step 3: Learning low-

GPs using offline data each GP posterior mean to-high probabilistic
transport (bridge)

(Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)

V. n



Distributional Translation via Probabilistic Bridge

?

p(low) : - p(high)
X ) &

Bridge: Gaussian process (GP) conditioned on two endpoints

- 4Zg

Z;_
- i — Yr(xo, x7) = xo(1 — t/T) + x7(t/T)
Kee = (min(t, k)/T)(1 — max(t, k)/T)

-

ZT-1

5O ©6 O

x(t) | xo, xr ~ GP(Y:(x9, X1), K¢ 1 1) — a bridge conditioned on two endpoints

e.g., Brownian Bridge

(Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)

A .



Distributional Translation via Probabilistic Bridge

?

X|

p(low) : - p(high)
Xp

Bridge: Gaussian process (GP) conditioned on two endpoints

~1Zt-1

_Zt—"

1Z21-1

Do (Xr—1|X¢, X7)

x(t) | X0, X7 ~ GP(Y (X9, X7), K¢ 1 1)

Z0

need to be learned

/

backward transition: low-to-high

GP bndge conditioned on two endpoints

V.

(Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)
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Distributional Translation via Probabilistic Bridge

? i
p(low) : - p(high)
X ) &

Bridge: Gaussian process (GP) conditioned on two endpoints

Parameterize target-agnostic transition kernel pg (x;_1 | X¢, X7)

(not knowing x) _ _
closed-form derived from GP bridge

Learning 8: distilling|q (x:_1|x¢, X0, X7 ) into pg (X1 | X¢, X7)
(amortizing over x)

Opp = arg;nin [E(xo,xT,t) [DKL(Q(xt—llxt; X0, X7) || Do (xt—llxt;xT))]

V. )



Experimental Evaluation: Inverse Modeling

Benchmark Optimization Tasks:

_m

Ant Morphology 25009 Continuous
D’Kitty Morphology 25009 56 N/A Continuous
TF Bind 8 32898 8 4 Discrete
TF Bind 10 50000 10 4 Discrete
RNA-Binding 5000 14 4 Discrete

Trabucco et al, “Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization”, ICML 2022
Lorenz et al, “ViennaRNA Package 2.0”, Algorithms for Molecular Biology 2011

/Nl .



Experimental Evaluation: Inverse Modeling

Results on Design-bench

Results on Biological RNA Tasks

Benchmarks

Method Ant D’Kitty TFBind8 TFBind10 || Mean Rank |
D, (best) 0.565 0.884 0.439 0.467 -
BO-qEI 0.812 +£0.000 | 0.896 £0.000 | 0.825 +£0.091 | 0.627 £0.033 16.75/22
CMA-ES 1.561 £0.896 | 0.724 £0.001 | 0.939 +£0.039 | 0.664 =0.034 8.00/22
REINFORCE || 0.263 £0.026 | 0.573 £0.204 | 0.961 £0.034 | 0.618 £0.011 17.00/22
GA 0.293 £0.029 | 0.860 £0.021 | 0985 0011 | 0.638 £0.032 12.751/22
COMs 0.882 £0.044 | 0.932 £0.006 | 0.940 £0.027 | 0.621 £0.033 13.25/22
CbAS 0.846 £0.033 | 0.895 £0.016 | 0.903 +£0.028 | 0.649 +0.055 12.50/22
MINs 0.894 +£0.022 | 0.939 £0.004 | 0.908 £0.063 | 0.630 £0.019 12.50/22
GA on GP 0.948 £0.013 | 0.946 £0.001 | 0.770 £0.087 | 0.654 +0.038 925/22
RoMA 0.593 £0.066 | 0.829 +0.020 | 0.665 = 0.000 | 0.553 £0.000 20.00/22
ICT 0911 +£0.030 | 0.945+£0.011 | 0.888 £0.047 | 0.624 +£0.033 13.50/22
Tri-mentoring || 0.944 £0.033 | 0.950 £0.015 | 0.899 £0.045 | 0.647 +£0.039 9.00/22
MATCH-OPT || 0.931 £0.011 | 0.957 £0.014 | 0.977 £0.004 | 0.543 +0.002 9.50/22
PGS 0.949 +0.017 | 0966 0012 | 0.981 £0.015 | 0.532 £ 0.000 77517122
LTR 0.907 £0.032 | 0.960 £0.014 | 0.973 £0.000 | 0.652 £0.039 6.25/22
DDOM 0.930 £0.029 | 0.925 £0.008 | 0.885 £0.061 | 0.634 £0.015 13.75/22
GTG 0.865 £0.040 | 0.935+0.010 | 0.901 £0.039 | 0.639 £0.016 12.50/22
BDI 0.964 = 0.000 | 0.941 £0.000 | 0.973 £0.000 | 0.636 +0.020 7.50/22
RGD 0.922 +£0.020 | 0.883 £0.014 | 0.889 +£0.068 | 0.644 +0.048 13.00/22
BONET 0.948 £0.025 | 0.957 £0.008 | 0.894 +0.086 | 0.606 +0.024 10.75/22
GABO 0.224 £0.051 | 0.719 £0.001 | 0.939 +£0.038 | 0.639 +£0.033 15.257/22
DEMO 0.948 £0.013 | 0.956 £0.011 | 0.812+£0.054 | 0.648 £0.042 9.25/22
ROOT (ours) || 0.965 £0.014 | 0.972 £0.005 | 0.986 = 0.007 | 0.685 +£0.053 || 1.25/22

éédr (Cuong Dao, Hung Tran, Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)

A

Benchmarks

BDI 0.604 + 0.000
Boot-Gen 0.913 + 0.064

|
| Method | RNA-A | RNA-B | RNA-C | MeanRank |
CbAS 0.270 +0.098 | 0.249 +0.088 | 0.261+0.093 |  6.00/8
BO-EI 0.537+0.106 | 0.517£0.108 | 0.481=0.100 | 3.67/8
GA 0518 +0.120 | 0.499 +0.100 | 0.496+0.091 |  4.33/8
COMs 0.187 +0.123 | 0.144 +0.121 | 0.209+0.100 | 7.67/8
REINFORCE | 0.166+0.096 | 0.149 +0.081 | 0.225+0.075 | 7.33/8

0.505 +0.000 | 0.411 +0.000
0.881 +£0.024 | 0.786 + 0.039

4.00/8
2.00/8

| ROOT (ours) || 0.956 = 0.023

| 0.955+0.013 | 0.922+0.013 ||

1.00/8

ROOT establishes a new SOTA across a diverse set of benchmark tasks
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Experimental Evaluation: Inverse Modeling

Results on Design-bench Results on Biological RNA Tasks

| “ Benchmarks ” | | I Benchmarks [ |
p— R ; | Method H RNA-A ‘ RNA-B | RNA-C || Mean Rank |
| Method I Ant | D’Kitty | TFBind8 | TFBind10 | Mean Rank | CbAS 0270 £ 0.098 | 0.249 £ 0.088 | 0.261 £0.093 || 6.00/8
BO-qgEI 0.537 £0.106 | 0.517 £0.108 | 0.481 £ 0.100 3.67/8
| D" (bCS[) ” 0565 | 0884 I 0439 | 0467 ” - | GA ¢ 0.518 £0.120 | 0.499 +0.100 | 0.496 +0.091 433/8
BO-qEI 0.812 £ 0.000 | 0.896 +0.000 | 0.825 +0.091 | 0.627 £0.033 || 16.75/22 || RonvoRCE | 01e 30000 | 9149 s 0081 | 0a9as 000 | 2378
CMA-ES 1.561 +0.896 | 0.724 +0.001 | 0.939 +0.039 | 0.664 = 0.034 8.00/22 ||BDI 0:604 £0.000 | 0.505£0.000 | 04110000 | 4.00/8
REINFORCE || 0.263 £0.026 | 0.573 £0.204 | 0.961 +£0.034 | 0.618 £0.011 17.00/22 | | BootGen 0913 £0.064 | 0.881+£0.024 ] 0.786 £0.099 | 2.00/8
GA 0.293 +0.029 | 0.860 £0.021 | 0.985+0.011 | 0.638 £0.032 || 12.75/22 | [ ROOT(ours) || 0956+0.023 | 09550013 | 0.92240013 || 1.00/8
COMs 0.882 +0.044 | 0.932 +0.006 | 0.940 +0.027 | 0.621 £0.033 || 13.25/22
CbAS 0.846 +0.033 | 0.895+0.016 | 0.903 +0.028 | 0.649 +0.055 || 12.50/22
MINs 0.894 +0.022 | 0.939 +0.004 | 0.908 +0.063 | 0.630+0.019 || 12.50/22
GA on GP 0.948 +0.013 | 0.946 +0.001 | 0.770 +0.087 | 0.654 + 0.038 9.25/22 : :
RoMA 0.593 +0.066 | 0.829 +0.020 | 0.665 +0.000 | 0.553 +0.000 || 20.00/22 Generating synthetic tasks:
ICT 0.911 +0.030 | 0.945+0.011 | 0.888 +0.047 | 0.624 +0.033 || 13.50/22
Tri-mentoring | 0.944 +0.033 | 0.950 +0.015 | 0.899 +0.045 | 0.647 +0.039 9.00/22
MATCH-OPT || 0.931 £0.011 | 0.957 £0.014 | 0.977 +0.004 | 0.543 +0.002 9.50/22 . . .
PGS 0.949 £0.017 | 0966 =0.013 | 0.981 £0.015 | 0.532 +0.000 775122 Help identify low- and high-value
o) 625 /22 . . . . .
LTR 0.907 +0.032 | 0.960 +0.014 | 0.973 +0.000 | 0.652 +0.039 6.25 /22 design distributions more reliably
DDOM 0.930 +0.029 | 0.925 +0.008 | 0.885 +0.061 | 0.634 +0.015 || 13.75/22
GTG 0.865 + 0.040 | 0.935+0.010 | 0.901 +0.039 | 0.639 +0.016 || 12.50/22
BDI 0.964 +0.000 | 0.941 +0.000 | 0.973 +0.000 | 0.636 +0.020 750/ 22 . e e .
RGD 0.922 +0.020 | 0.883 +0.014 | 0.889 + 0.068 | 0.644 +0.048 || 13.00/22 Offline optimization = Learning
BONET 0.948 +0.025 | 0.957 +0.008 | 0.894 +0.086 | 0.606 +0.024 || 10.75/22 P :
GABO 0.224 +0.051 | 0.719 +0.001 | 0.939 +0.038 | 0.639 +0.033 || 15.25/22 transport between 2 distributions
DEMO 0.948 +0.013 | 0.956 +0.011 | 0.812 +0.054 | 0.648 +0.042 9.25/22
ROOT (ours) || 0.965+0.014 | 0.972 +0.005 | 0.986 +0.007 | 0.685 + 0.053 125/22 - .
| (ours) | | | 0986 | ” — Mitigates data scarcity
and erratic behavior in OOD

Le Nguyen, Nguyen Truong, Nghia Hoang, 2025)
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Outline of Tutorial

° Introduction and Overview

° Forward Modeling Approaches

° Inverse Modeling Approaches

°* Theoretical Analysis

° Offline Optimization in Small Data Setting

° Open Challenges

V.



Theoretical Understanding <~ Algorithm Design

° Existing theory uses some structural aspect of the oracle
objective function or the offline data distribution
~ to explicitly/implicitly characterize the optimization performance

° Q1: Understanding how particular structural aspects
influence the (worst-case) optimization performance?

° Q2: How such an understanding can be leveraged to
develop practical algorithms?

V. .



Theoretical Analysis: Forward Modeling

° Kuba et al., Functional Graphical Models: Structure Enables Offline
Data-Driven Optimization

°* Many forward models rely on pessimism/conservatism

“~ However, strict pessimism limits you to "convex hull" of the
training data => cannot find anything better than training data

° Key Idea: Exploiting structure helps us find better designs

“ Intuition: if objective function decomposes into smaller,
interacting components, we can "stitch together" optimal parts

V. .



Theoretical Analysis: Forward Modeling

* Key assumption: function decomposes additively over
cligues of the input graph

f(x) = fo1,2(%0,1,2) + f2,34(xX234) + f1,5,6(X4,56)

V. 81



Theoretical Analysis: Forward Modeling

° Key assumption: function decomposes additively over
cligues of the input graph

" (x)

p(x)
the optimal distribution and p(x) is the data distribution
over the entire input space

“ Naively, regret is large because ratio explodes

°* Regret (error) bound depends on where 7 (x) is

coverage of the marginals of the cliques max ———

Using FGM assumption, regret depends only on the
c pc)

V.
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Theoretical Analysis: Gradient-Type Bound

The optimization quality depends on the discrepancy
between the surrogate’s and oracle’s gradient structure

Let R,(x) & R,(x) denote the values of the recommended
designs via m-step gradient search with step size 4
using the learned surrogate and oracle, respectively.

Worst-case performance gap: G,,, ; = max | R(x) - R (x) |
’ X

Assume the oracle g(x) is £-Lipschitz and u-smooth:

Gy < MAL(L+ )™ max || Ve(x) - Ve(x; 6) |

bbidin
//A gradient gap 83




Theoretical Analysis: Gradient-Type Bound

The optimization quality depends on the discrepancy
between the surrogate’s and oracle’s gradient structure

Worst-case performance gap: G, ; = max | Ry(x) - Ry(x) |
X

Assume the oracle g(x) is £-Lipschitz and u-smooth:

G < mAL(1+ /1,u)m'1 m)a(x | Vg(x) - Vg(x; 8) Il

gradient gap

Key insight: Matching gradient is more robust than matching
value (see MATCH-OPT (Hoang et al., 2024))

V. .



Theoretical Analysis: Inverse Modeling

° Lietal., Diffusion Model for Data-Driven Black-Box Optimization

° Assumption: data lie on low-dimensional (m < d) manifold
x = Az

° Inverse approach: x*~ pg(x|y = a) where pg is learned
via diffusion model

* Regret depends on three terms:

El+62+63

Off-support Fidelity

Estimation
On-support error

error distribution shift

V. -



Theoretical Analysis: inverse approach

° Lietal., Diffusion Model for Data-Driven Black-Box Optimization
°* Regret depends on three terms:

El+62+63

~ Estimation error: error of not knowing the true objective
function which depends on latent dimension m

“ On-support distribution shift: error of forcing the diffusion
model to generate samples that might be extremely rare or
unseen in the training data

~ Off-support Fidelity error: penalty for leaving the manifold
which is typically low for well-trained generative models

V.
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Outline of Tutorial

° Introduction and Overview

°* Forward Approaches

° Inverse Approaches

°* Theoretical Analysis

° Offline Optimization in Small Data Setting

° Open Challenges

V.



The Small Data Challenge
Why Small Data is Different? Why Standard ML fails?

Overfitting and
extrapolation

100k

designs

100 designs { Distribution Shift }

[ Prediction Bias }

Labeled training data cover 0.1% of the design space

. .



The Small Data Challenge
Why Standard ML fails?

Model fits observed 100
training examples too well
but fails on unseen regions.

Overfitting and
extrapolation

{ Distribution Shift

[ Prediction Bias

|
|

// Solution: Synthetic pretraining on diverse functions

A
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The Small Data Challenge
Why Standard ML fails?

extrapolation

Few training examples
from poor-performing Distribution Shift
regions do not cover the

optimization landscape

L Overfitting and }

[ Prediction Bias }

Solution: Generate synthetic data across full input space

V. .




The Small Data Challenge
Why Standard ML fails?

extrapolation

{ Overfitting and ]
{ Distribution Shift }

Standard ML optimizes
value-matching, not the
directional signals needed
for optimization

Prediction Bias

Solution: Optimize for gradient matching, not value matching

V. 91



Small Data Regime: Two Approaches

Y/



EXPT: Synthetic Pretraining for Few-Shot
Experimental Design

[Tung et al., 2024]

Robotics

% e
y TiyYi) fim1
. \ 53 \

7
o (Y Synthetic _ PT In-context @
r X Pretraining 2 = Adaptation &
Molecules

DNA

* Pretraining: Model learns optimization patterns from
unlabeled designs across domains.

« Adaptation: Model conditions on few (design, score)
pairs and target z* to generate optimal design x*.

V. .



EXPT: Synthetic Pretraining for Few-Shot
Experimental Design

Goal: Create diverse synthetic functions that cover
different optimization landscapes

-~

Random
Function
Selection

Sampleg~ G
N

~

Iy

J

V.

/Generate Design \

Points
Sample x uniformly
across input space

x ~ Uniform(bounds)

Covers diverse

11!

/Evaluate
Function
z=g(x; 0)

regions, not just

\Qear optima /

(%, 2)

Create pairs

~

J
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EXPT: Synthetic Pretraining for Few-Shot
Experimental Design

____________________

-4
®:
@E
o
@E
-
® @

______________________________

//Am [Tung et al., 2024]
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OptBias: Black-Box Optimization from Small
Offline Datasets via Meta Learning

Gradient Estimation Error vs. Size of Training Data ° Problem' Wlth Only 1 %
0.1497 I training data, gradient

estimation error is very
high (red bar)

Solution: OptBias
reduces this through
003292 better synthetic data

- coor W, generation and meta-
5% 10% - 100% learning

Fraction of Training Data

V.
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Overview of OptBias

Sim40pt Synthetic Data Generator Meta Learning for .
Gradient Search

Gradient Matching
Gaussian process posterior
P via real small offline data /Optimized design\
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X Initial design
Sample synthetic function
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4 (%2, 27) ‘
@D @D G L (X0, Zn)

.‘. ,.
/ KFine-tuned surrog@
K Gradient-ascent trajectory / Fine-Tuning on Small

“real” Offline Data

Key Idea: OptBias uses Sim4Opt to generate oracle-like synthetic
functions, then applies meta-learning with gradient matching to align the
surrogate with the true oracle's gradient field
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Overview of OptBias
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Step 1: Synthetic data generation
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Overview of OptBias

Finetuned
Support Set
—— Update
( s
S
Match-Opt Meta- i
Learning 5
1% of I
—:iDofﬂine =
_t_J\_) Gradient
Target Set Finetuning Search
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Attribute

Key Strategy

EXPT vs. OptBias

ExXPT

Synthetic pretraining
+ inverse modeling

OptBias

Synthetic Pretraining
+ meta-Learning

Data Generation

Random GP
sampling from
unlabeled data

GP posterior with
gradient -ascent

Model architecture

Transformer encoder
+ VAE decoder

Neural surrogate
with meta learning

Optimization Focus

Predict optimal
designs directly

Learn gradient field
to guide search

VN
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Experimental Evaluation: EXPT vs. OptBias

Table 1: Performance achieved by baselines under the limited data settings (using 1% of the offline dataset)
across various benchmark tasks.

‘ H Benchmarks |

| Method | Ant | DKitty | TFBind8 | RNA1 | RNA2 | RNA3 | Mean Rank |

| Diest from 1% offline data || 0.123 | 0307 | 0.124 | 0.028 | 0.027 | 0.066 |  None |
GA 0.734 £ 0.054 | 0.831 £ 0.034 | 0.782 £ 0.117 | 0.475 = 0.134 | 0.497 £ 0.091 | 0.317 = 0.072 5.17
MINs 0.767 + 0.084 | 0.895 + 0.011 | 0.762 + 0.135 | 0.076 + 0.062 | 0.019 + 0.029 | 0.132 + 0.059 7.67
COMs 0.908 £ 0.042 | 0.705 £+ 0.012 | 0.438 + 0.000 | 0.279 + 0.059 | 0.278 + 0.120 | 0.293 + 0.044 6.08
DEMO 0.800 + 0.150 | 0.845 + 0.037 | 0.677 £+ 0.168 | 0.166 + 0.034 | 0.141 + 0.045 | 0.295 + 0.043 6.50
LTR 0.865 + 0.118 | 0.91 + 0.026 | 0.45 + 0.027 | 0.19 £ 0.189 | 0.215 £+ 0.262 | 0.417 = 0.176 5.17
Match-Opt 0.859 + 0.007 | 0.912 £+ 0.013 | 0.438 + 0.002 | 0.129 + 0.000 | 0.119 £ 0.000 | 0.166 = 0.000 6.92
Batch BO (g-EI) 0.482 + 0.066 | 0.816 £+ 0.030 | 0.928 + 0.026 | 0.490 + 0.114 | 0.523 £+ 0.103 | 0.462 + 0.097 4.00
REINFORCE 0.327 + 0.062 | 0.588 + 0.162 | 0.872 + 0.057 | 0.071 = 0.054 | 0.062 + 0.054 | 0.119 + 0.064 8.83
ExPT 0.9276 £+ 0.009 | 0.955 + 0.009 | 0.879 + 0.080 | 0.249 + 0.013 | 0.239 + 0.009 | 0.341 + 0.041 3.33

| OptBias (ours) | 0.960 £ 0.017 | 0.947 £ 0.012 | 0.945 £ 0.024 | 0.503 £ 0.025 | 0.540 + 0.113 | 0.450 £ 0.134 | 1.33 |

Table 2: Performance comparison between our proposed method OPTBIAS, which uses meta-learning for surro-
gate training with synthetic data, and its variant, which replaces meta-learning with a pre-training procedure.

‘ H Benchmarks |
| Method 1 Ant | D’Kitty | TFBind8 | RNA1 | RNA2 | RNA3 |
H 0.884 + 0.043 ‘ 0.129 + 0.000 0.166 + 0.000

‘ OptBias (pre-training)

0.932 + 0.007
OptBias (meta-learning)

0.438 + 0.000
0.947 £+ 0.012

0.945 £ 0.024

0.119 + 0.000 ‘

0.960 £ 0.017 0.503 £ 0.025 | 0.540 &£ 0.113 | 0.450 £+ 0.134
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Outline of Tutorial

° Introduction and Overview

°* Forward Approaches

° Inverse Approaches

°* Theoretical Analysis

° Offline Optimization in Small Data Setting

° Open Challenges

V.



Open Challenges: #1 Better Benchmarks
° Current benchmarks (e.g., DesignBench) have served the

community but important to set up new benchmarks
with best practices

V.



Open Challenges: #1 Better Benchmarks

~ Setting up benchmarks require significant effort due to specific
software requirements and dependency issues

m Better tooling (see Bencher by Leonard Papenmeier and Luigi Nardi)
“ Construction of surrogate models as Oracles for evaluation
m Add explicit constraints

“ Synthetic objective functions that are related to real-world
problems

m e.g., Ehrlich functions for biological sequence design
~ Policy of collecting offline datasets

m Ideally, should be related to real-world data collection

m Random policies are not always a sound choice

V.



Open Challenges: #1 Better Benchmarks

° Evolve benchmarks over time to avoid overfitting

“ Procedurally generated benchmarks
~ Lots of new ideas in LLM/GenAl literature

V.



Open Challenges: #2 Hyperparameter Tuning

° Important requirement to only use offline dataset

“ Leverage ideas from offline RL (e.g., see Nie et al., Data-Efficient
Pipeline for Offline Reinforcement Learning with Limited Data)

° Better methods for uncertainty quantification tied to the
end-goal of design

V.



Open Challenges: #3 Multi-Objective Optimization

4 Drug discovery N\ 4 Hardware design I
@ Effectiveness j y e a , Performance ]
©: ; };@ @ sty b it Reliability j
K B cost \L / k — Power \* /

° Important, but highly under-studied problem setting
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Summary of Tutorial
° Introduction and Overview
° Forward Approaches
° Inverse Approaches
°* Theoretical Analysis
° Offline Optimization in Small Data Setting

° Open Challenges

&

Nascent but important area. Lot more work
// D needs to be done. Please join and contribute ©
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